Life Scope G9, G7, G5 (CSM-1901, CSM-1700 series, CSM-1500 series) and TR (BSM-6000 series) bedside monitors

Category: NIHON KOHDEN (日本光電) Life Scope monitoring history from the 1990s. This chapter discussed the Life Scope TR monitor and succeeding Genesis models Life Scope G5 series (CSM-1501, CSM-1502), Life Scope G7 series (CSM-1701, CSM-1702) and Life Scope G9 (CSM-1901) bedside monitors. The new monitors are duplicating the a familiar attempt by Life Scope J (BSM-9101) bedside monitor to pass off the yellow shared-use MULTI sockets as an innovative modular design. This chapter also debunks the story that each Smart Cable comes with a module embedded.

 



NIHON KOHDEN Life Scope Patient Monitors Struggling The Disruptive Digital Revolution (VI)

 

 

THROWING GOOD MONEY AFTER BAD

Those who cannot remember the past are condemned to repeat it -  George Santayana


Life Scope TR (BSM-6000 series) Bedside Monitors
Strategy is really about resource allocation, Life Scope TR (launched internationally less than a year after Life Scope Jin April 2008 persisted to continue with the yellow shared-use MULTI sockets, indicating there was no intention to change. Life Scope TR (BSM-6000 series) bedside monitors was a continuation of the Life Scope J (BSM-9101) bedside monitor, masquerading as digital modular monitors after an earlier failed attempt in the 1990s to make one.
NIHON KOHDEN was still unable to deliver a new real-time network for the exchange of digital measurement data in Life Scope TR; the development team continued to shy away from the difficult task of working on a new measurement data-exchange network platform to do away with the yellow shared-use sockets as camouflage.

Life Scope TR was a decision to invest in continued weakness, it was throwing good money after bad. Instead of just one type input unit, Life Scope TR (BSM-6000 series) went on to offer a main unit with choice of input units and socket boxes.

Compared to Life Scope J, Life Scope TR bedside monitors have more than one type of Input Unit to choose from


 
Similar to Life Scope J bedside monitor, Life Scope TR bedside monitors are not digital modular monitors
 
The structure of a Life Scope TR Input Unit with its expansion unit corresponds to a Philips MMS module with its extension. These are operating at the configured level, not modular. It will be unmistakable Life Scope TR bedside monitors are configured if there are no yellow time-shared MULTI sockets on the input units and extensions to confuse you.

 

  The Philips MMS modules (initiated by Hewlett Packard) are however additionally capable of being linked to a measurement data network using Ethernet
   
HP Agilent M3/M4 portable monitor

While the Philips MMS modules can be upgraded using extensions, it also has an IP address on the measurement Ethernet network, and can be expanded by linking to a module rack with individual modules. This way, those expensive individual modules can be easily shared.

On the contrary, NIHON KOHDEN Life Scope TR Input Units cannot be linked using networking because the manufacturer failed to achieve this capability, there is no way to share individual module.
 
 
   Think about the flexibility of a printer with network interface compared to one only equipped with a direct connection
  
The Philips MMS module (and extension) serves as the basic module and can be expanded using a measurement LAN which the Life Scope TR input units lack



  The use of Smart Cables is configured
 
A yellow MULTI-parameter socket by itself does not automatically mean all the five types of mentioned parameters are available for measurements; it still depends on whether what hardware are actually being placed inside for selection. The amount of configured hardware linked to each multi-parameter socket varies, so is the system support for serial kits. If a model is not equipped with FiO2 hardware internally, no amount of yellow MULTI sockets can provide this measurement capability.

Examples of configured hardware and serial kit sets making use of Smart Cables

In other words, it is the built-in hardware that determine the parameter capability; and in the case of serial kit sets, the system software. This of course, is the same description as a configured patient monitor
 
 
Actual internal hardware and system support for serial kits varies for each multi-parameter unit


The input units or monitors using Smart Cables are still configured, and the manufacturer has no reason to continue using it. It is just dabbling with distortions and limitations.


The configured BSM-6000 series monitors are priced and marketed as modular monitors but without the capability. Many monitoring hardware inside the AY-663P Input Unit are not made clear in basic product communication to the market, and that was intentionally done to hide the fact the input units are configured.

Take a closer look at the AY-663P Input Unit shown below, it needs at least ten sockets for carefree use but the manufacturer can only provide three yellow MULTI-parameter sockets for time-sharing use. This means only three of the ten connectable cables can plug into the input unit at any one time. The input unit is so short of connector sockets, why would anyone need such a skewed input unit?

The reason AY-663P Input Unit cannot come with more MULTI-parameter sockets is because only three IBP amplifier hardware are specified for said input unit. Since each MULTI-parameter socket comes with its own one-channel IBP hardware, the manufacturer cannot provide more than three MULTI-parameter sockets. Notice the two channels of Temperature hardware in the shown input unit are not making use of the yellow MULTI-parameter sockets for connections, this is to provide relief to the three yellow MULTI-parameter sockets which are not enough for use.

The pain of limitations and distortion, not flexibility

Next comes the fascinating offer to add more yellow MULTI-parameter sockets to supplement the three already on the AY-663P Input Unit. Electrically, the manufacturer can add more MULTI-parameter sockets to the AY-663P Input Unit using an external box (AA-674P) which comes with four MULTI-parameter sockets.

The link from AA-674P expansion box to AY-663P is an analog interface, not digital; as such, only a maximum of four MULTI-parameter sockets can be added. The limitation is due to signal deterioration caused by voltage drop and noise pickup.

Shown below is a Life Scope TR bedside monitor main unit (on the right) with the input unit (AY-663P) on the immediate left of its side. On the extreme left is a satellite box with four supplementary MULTI-parameter sockets (AA-674P) that can also link to hardware already configured in the AY-663P Input Unit.

The external expansion box (AA-674P) on the extreme left not only contains 4 MULTI sockets, but also 4 channels of IBP hardware

It is obvious the manufacturer should have designed an input unit with enough connector sockets in the first place, but there is a reason for wanting to do it. The purpose is to imitate the process of parameter scalability when MULTI-parameter sockets are shown visually being added to the input unit, but the manufacturer is adding sockets and not monitoring parameters. A bedside monitor using AY-663P Input Unit and AA-674P expansion box is not modular in desig
n.

Beware what we are seeing here is scalability of the MULTI-parameter connector sockets, not the scalability of monitoring parameters that is being sought after by the market
 
It is still not so straightforward as thought; the act of adding four MULTI-parameter sockets using the AA-674P expansion box also means adding four channels of IBP hardware to what are already configured in the AY-663P Input Unit. Do you need seven channels of IBP hardwareThis is how Life Scope TR bedside monitor got its maximum ability to do seven channels of IBP monitoring; it is either three channels of IBP monitoring using AY-663P alone or seven channels of IBP monitoring using both AY-663P and AA-674P.

The limitation of only four MULTI-parameter sockets can be added means it is not possible for the AY-663P Input Unit to make use of two AA-674P expansion boxes.


    The Smart Cables are coded measurement cables
 
The marketing messages "New Modular Technology" and "The Module is in the cable!" are wild imaginations.

What do the manufacturer mean by this statement? 

It started with the Life Scope TR (BSM-6000) series monitors in the USA market and gradually adopted officially for International markets. These are precise statements.


This is just assertion without showing any proof
 
Chip makers need huge demand to justify each of their products, so which chip manufacturer is supplying NIHON KOHDEN the variety of analog chips given the extremely low volume in demand? If we were to open up the plug of a Smart Cable, what do we seeA small PC board is seen attached to some pins of the yellow plug.

 
Size of the PC Board relative to pins of the yellow connection plug
 
The PC board confirms a cheap digital EEPROM chip is being used to code the Smart Cable.
 
A cheap digital chip was what we found inside the yellow Smart plug

If we were to open up the plug of a compatible IBP cable from China suppliers, what do we see? It is the same thing, a plug with a digital code defined by NIHON KOHDEN.


Under US FDA rule, a cable is only a cable if it does not change the signal that passes through it. A Smart Cable with a hexadecimal code is just a cable and does not change a signal passing through it, but if it has an amplifier it becomes a medical device and requires FDA registration. Can you find any stand-alone Smart Cables registered as a medical device?

When the Smart Cables are used with serial kit sets, such as mainstream CO2 kit sets or the NMT AF-101P kit set, the registration is for the active serial kit set and not the passive Smart Cable.


Clear proof the IBP amplifier hardware is embedded inside the monitor, an important fact withdrawn from later monitor manuals
 
The Life Scope BSM-2301 Service Manual provided details on the design; manuals for later models stop providing such information. The major move to curb details in manuals started from Life Scope J (BSM-9101) Bedside Monitor.

In the Life Scope BSM-2301 service manual, you can see the IBP and thermistor respiration are internal hardware inside the Life Scope BSM-2301 monitor. These hardware are linked to the MULTI-parameter socket, and to make use of either hardware, a Smart Cable with the correct code must be plugged into the MULTI socket.
 
Can you see the IBP amplifier and thermistor respiration hardware are internal components of the Life Scope BSM-2301 monitor?

The MULTI-parameter socket doubles as a serial port without any need for internal monitoring hardware, only as a link to the monitor. In the block diagram below, the processed digital serial data from a CO2 kit set goes straight to the digital microcontroller APU (Analog-block Processing Unit) and is forwarded to the DPU.  For a parameter using the internal analog hardware, the analog signal needs to pass through an Analog-Digital converter before going to the APU for digital processing. 


The challenge of monitoring a patient during transportation
 
The idea of turning the Input Unit on a host monitor into a Transport Monitor was not yet conceived when Life Scope TR (BSM-6000 series) monitors were first designed, the initial design was to follow GE Marquette way, transferring the input unit from Life Scope TR bedside monitor (BSM-6501 or BSM-6701) to a compact 10.4-inch Life Scope TR (BSM-6301) to fulfill the transport role.
 
The original way was to use Life Scope TR 10.4 inch model as transport monitor


Change of mind from following GE Marquette to Philips IntelliVue MMS X2
 
Due to market pressure, a transport monitor was realized by the addition of touch-screen, storage memory and rechargeable battery to the multi-parameter input unit, doing away the need to attach it to a monitor during patient transfer; the design is an adaptation to imitate the Philips IntelliVue MMS X2.
 
Before the introduction of transport monitor Life Scope PT, Nihon Kohden first released the Data Acquisition Units for the BSM-6000 series bedside monitor in April 2009. These Data Acquisition Units (DAU) are connected to the main unit directly using point-to-point digital serial communication and there were two types; the JA-690PA Data Acquisition Unit has no yellow shared-use MULTI sockets while the JA-694PA Data Acquisition Unit has four MULTI sockets.
 
The JA-690PA and the JA-694PA Data Acquisition Units are linked directly by point-to-point serial communication to the Life Scope TR main unit

The JA-690PA and JA-694PA data acquisition units were designed so that an Input Unit can be placed next to the patient while allowing the main unit with the screen to be mounted at a suitable height (away from the patient) for purpose of convenient viewing.

The main purpose of JA-690PA and JA-694PA Data Acquisition Units is to bring the Input Unit nearer to the patient

The Life Scope PT acts as an input unit when placed on the Data Acquisition Unit (DAU) linked to a host monitor to a host monitor such as Life Scope TR or Life Scope G9, and becomes an independent transport monitor upon its release from the DAU.

  Life Scope J discarded AY-920PA to make use of Life Scope PT as transport monitor?
 
Since it was not possible for Life Scope J bedside monitor MU-910R main unit to link directly to JA-690PA or JA-694PA data acquisition unit, a new costly QI-930P Interface Unit had to be introduced (as shown). This new arrangement makes AY-920PA Input Unit redundant.
 
By discarding the original AY-920PA Input Unit, Life Scope J could make use of Life Scope PT as a transport monitor

A new Genesis Life Scope G9 bedside monitor was born when a new Core Unit replaced both the QI-930P Interface Unit and the MU-910R main unit.
 

Life Scope TR updated to Life Scope Genesis G5 bedside monitor

The updated model of Life Scope TR is Life Scope G5 bedside monitors; the main unit of Life Scope G5 bedside monitor is Life Scope TR main unit updated with an integrated panel PC replacing previous LCD display. The main unit is now known as Core Unit like Life Scope G9.

There is an alternative model to Life Scope G5 bedside monitors, known as Life Scope G7 bedside monitors. The latter model makes use of a Panel PC as main unit and rely on the data acquisition unit to interface with input units or Life Scope PT transport monitor.

As shown below, the main unit is the panel PC with touchscreen sizes of 15.6-inch and 19-inch. Notice the Input Units (originally designed for Life Scope TR) cannot be placed on the main unit, and a data acquisition unit is mandatory for use. Life Scope G7 monitor configuration makes it redundant to have Life Scope G5 bedside monitor using a data acquisition unit. The external socket box for Life Scope G7 bedside monitor is the same one (AA-174P) as Life Scope G5, with MULTI sockets arranged horizontally and must be linked to a new type Data Acquisition Unit (JA-170PA).

The system weakness discussed in BSM-1700 From Input Unit to Transport Monitor applies to Life Scope G9, G7, G5 bedside monitors as host monitor since it is regardless of the type of Host Monitor being deployed. Essentially, Life Scope PT (BSM-1700 series) has no wireless mechanism to continue linking with the central nurse station the moment it is detached from Life Scope G9 Host Monitor to operate as an independent transport monitor. The Central Nurse Station simply has no idea what is happening to the patient during the period of transport and can only be updated after the transport monitor is attached back to another Host Monitor (i.e. completion of patient transfer). This effectively means using the BSM-1700 as a transport monitor for Life scope G9 and others should be re-examined.


 

Conclusion:

The Challenges Ahead

The competitors are fast-moving targets for NIHON KOHDEN outside of Japan and they have no reason to wait. We had anticipated new type Genesis patient monitors could only mean the returning to plain connectors and a working modular infrastructure for measurement data finally introduced. Genesis is a powerful word suggesting the starting of everything anew but it is just talks without the costly action.

Clearly, investment on the Multi-parameter Sockets had consumed tremendous amount of Capital and efforts, it is therefore difficult to let go! Life Scope G9, Life Scope G7 and Life Scope G5 monitors are all using the same Life Scope TR hardware. Fresh huge investments are urgently needed for new generation monitors just to catch up with the rest of the world.
 
History repeats, and we can already see the future from the past. In an age of new innovative products from digital transformation, NIHON KOHDEN is unfortunately ill-equipped to compete outside the protected Japanese market.
 


END